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Poisson-bracket approach to the dynamics of nematic liquid crystals
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We use the general Poisson-bracket formalism for obtaining stochastic dynamical equations for slow mac-
roscopic fields to derive the equations that govern the dynamics of nematic liquid crystals in both their nematic
and isotropic phases. For uniaxial molecules, we calculate the Poisson bracket between the tensorial nematic
order paramete® and the momentum density as well as those between all pairs of conserved quantities. We
show that the full nonlinear hydrodynamical equations for the nematic phase derived in this formalism are
identical to the nonlinear Ericksen-Leslie equations. We also obtain the complete dynamical equations for the
slow dynamics of the tensorial nematic order param&ealid both in the isotropic and the nematic phase.

They differ from those obtained by other techniques only in the values of kinetic coefficients and in the number
of nonlinear terms irQ, which are present.
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[. INTRODUCTION leigh starting from complex fluids with a general tensorial
order parameter22].

Nematic liquid crystals are unique materials, since they The low-frequency hydrodynamics of the nematic phase
flow in all directions such as a homogeneous fluid and yets determined entirely by the conserved densities, character-
they are optically anisotropid,2]. Their low-frequency dy- izing both the isotropic and nematic phases, and the director
namical properties, which are characterized by orientationah. There are, however, physical situations in which the di-
relaxation as well as by shear and compressional w5, rector alone does not provide a complete description of the
are central to the switching behavior of liquid crystal dis- nematic orientational order, and a description in terms of the
plays[6]. They give rise to interesting fundamental phenom-full nematic order paramete® (also called the alignment
ena including electrohydrodynamical pattern formati@gfh ~ tensor[23]) is required. As a result, there has been an in-
instabilities under shear floyd,2], orientational fluctuations creasing interest in dynamical equations both in the nematic
observable in light scattering experimef@3, and the aniso- and the isotropic phases in which the nematic order is de-
tropic and nonlinear Stokes drag on a particle embedded in scribed byQ rather than byn alone. These equations neces-
nematic solvenf9]. Nematic liquid crystals raise fundamen- sarily include nonhydrodynamic modes, which nonetheless
tal questions about how broken symmetries affect low-have characteristic relaxation times that are slow compared
frequency hydrodynamics, and it is not surprising that oveto microscopic times. In conjunction with the Landau-
the years there have been a number of derivafidnr$,1] of  Ginzburg—de Gennes free energy, they provide a description
the equations governing nematohydrodynamics. In this pasf dynamical processes close to the nematic-isotropic phase
per, we present a derivation of these equations, and of thieansition[23—2€], of processes in which the degree of or-
equations governing the relaxation of the symmetric-dering can vary, e.g., by applying a shear deformation, or of
traceless-tensor nematic order param€&gt0-12,1in both  processes in thin liquid crystal cells subject to large external
the nematic and the isotropic phase. We use the Poissofields [27]. They also provide a detailed description of the
bracket formalism of classical mechanids3] developed in  dynamics of line and point defecf28,29 whose cores ex-
the framework of stochastic equations for fluctuating macrohibit a complex biaxial ordering which is beyond the simple
scopic field variablefl4—18 and applied to dynamical criti- director picture30].
cal phenomen@l9]. The first complete formulation of the dynamic equations

Using the formalism of rational mechanics, Ericksen andnvolving the Q tensor was presented by H£8]. Subse-
Leslie were the first to derive a full set of dynamic equations,guent refinements were carried out by Kuzuu and Doi, who
commonly referred to as Ericksen-Leslie equatit®d], for  started from a molecular kinetic equatifdi], and by Olm-
the velocity and director fielash specifying the direction of sted and Goldbaf25], who set up the dynamic equations in
nematic anisotropy. Later, the Harvard group argued that th&ll analogy to de Gennes’s derivation of the Ericksen-Leslie
interpretation of the dynamic equation for the directbtre  theory in Ref.[1]. In parallel, Edwards, Beris, and Grmela
so-called Oseen equatipas the balance law for the angular pioneered a derivation based on a Hamiltonian formulation
momentum is not well justifiedi20], and they presented a of continuum mechanicg32]. Further approaches to thg
rigorous derivation of the linearized hydrodynamic equationgensor dynamics are introduced in RE27] by Qian and
starting from conserved and hydrodynamic Goldstone variSheng, in Ref[22] by Sonnet and Virga, and in R¢B3] by
ables[5]. The full nonlinear theory based on this apprachPleiner, Liu, and Brand. The latter though purely phenom-
was developed by Pleiner and Brah@l]. De Gennes enological is very close in spirit to the approach we present
pointed out the common features of the two approaghgs here.

Recently, Sonnet and Virga rederived the Ericksen-Leslie The Poisson-bracket approach we adopt in this paper has
equations in the framework of a variational principle of Ray-several advantages. First, it automates the derivation of
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coarse-grained dynamical equations once the dynamic fielthere the symbo[ - - - ] specifies the coarse-grained aver-
variables are defined. As we shall see in the following, thisages. The statistical mechanics of the fiefelg(x,t) is de-
approach, however, requires more carefulness in nematic ligermined by the coarse-grained Hamiltonigs[{® ,}],

uid crystals than it does in other systems such as magnetghich is a functional of the macroscopic variables. It is con-
and superfluids. Second, the formalism applies to nonhydrastructed in such a way that the statistical averages of observ-
dynamic slow variables as well as to true hydrodynamic vari-ables in the microscopic and the macroscopic representation
ables. Third, it gives easy access to nonlinear terms, as theye identical. In formulas, this means

appear, e.g., in the convective derivative of the Navier-

Stokes equations. The formalism has been applied to diverse - . o 2 kT
systems such a@nti)ferromagnet§19], quasicrystalg34], <f({q)#})>_J' Dx*.pHf({Pu)})e e
or to nematic polymerg35] which demonstrate its universal-
ty. =(f(@.(xD})
In the literature, different methods are used to calculate
the Poisson brackets. Volovik employs pure symmetry argu- =f D@M(x,t)f({(I)lL(x,t)})e‘H’kBT,

ments[ 36,37 that are not sufficient to provide a full descrip-

tion of nematic liquid cryst_als bec_ause it fails to prqperlywhere kg is the Boltzmann constant; is the temperature,
treat the degree of nematic ordering. Edwards, Beris, andq D(x?,p%) and DD ,(x,t) are integration measures. The
1 y2 ) .

Grmela on the other hand define their Poisson brackets on a ] . . .2
continuum leve[38]. observable is a function of the microscopicd,) or mac-

Here, in contrast, we start from a microscopic definition"oScopic () fields. In practice, phenomenological forms
of the field variables. Following the work of Forsf@g], we  for H[{®,}] are used. ,
introduce such variables for model-liquid-crystal molecules 1he macroscopic field ,(x,t) describe the slow dy-
made from point particles and employ the conventional defi@mic response of the system, i.e., they are either hydrody-
nition from classical mechanics to arrive at coarse-grained@mic or quasihydrodynamic variables whose characteristic
Poisson brackets for the macroscopic field variables. A careédécay timesr in the long-wavelength limit are much larger
ful treatment is needed to determine the central PoissoH)an microscopic decay times. Then, following the theory of
bracket between the alignment ten@and the momentum !(Il’le'[IC or stochastic equations, the variables evolve accord-
density which extends the work of Forst89]. We then ing to[17-19
rederive the Ericksen-Leslie theory and rigorously justify the
Oseen equation. The Onsager and Parodi relations for the M:V (x)—T
Leslie viscosities are automatically fulfilldd0]. We derive at a
generalized dynamic equations for the alignment tensor. Our ] . o
equations have the same form as those derived by Olmstedhere the reactive ternd,(x) is also called nondissipative
and Goldbar{25] and those obtained by Pleinetal.[33].  OF Streaming velocity and the secor_ld term mtro_duces dissi-
We obtain explicit forms for reactive coefficients that arePative effects. These equations, which can be rigorously de-
merely unspecified phenomenological coefficients in theséved from microscopic principles following the works by
approaches. Our equations have terms not present in those@fanzig [14], Kawasaki[15], and Mori, Fujisaka, and
Olmsted and Goldbart, and those of Pleimgral. contain ~ Shigematsy16], describe the low-frequency and the long-

The paper is organized as follows. In Sec. I, we introduceropic fluid, for example, they correctly reproduce the fully
the general formalism. In Sec. Ill, we define the molecularonlinear Navier-Stokes equations. Supplemented with a
model and calculate all relevant Poisson brackets. The fulfoise term{,(x,t), they provide a powerful formalism for
sets of dynamic equations for the director or Qeensor calculating dynamical correlation functions in equilibrium

dynamics are derived and discussed in Secs. IV and V, reand, especially, for treating effects due to the coupling be-
spectively. tween modes. As such, the stochastic equations are used ex-

tensively in the study of dynamical critical phenomena,
where nonlinearities are importait9]. In this paper, we are
Il. GENERAL FORMALISM mainly interested in deriving the equations for the low-
frequency dynamics of the isotropic and nematic phases of
In this section, we summarize the general formalism onjquid crystals, and we will not give any further consider-
which our derivation of the dynamic equations in nematication to the noise. Disregarding noise in E#j) means that
liquid crystals is based. Let us consider systems whose mhonequilibrium averages of the macroscopic field variables
croscopic dynamics is determined by canonically conjugateyre used41].
variablesx“ and p* for each particlea and a microscopic The concrete form of the reactive term involves Poisson
Hamiltonian H({x°},{p"}), where {x*}=x%x? ... etc. brackets which are the central quantity of this formalism; it
Here, we focus on a set of macroscopic field variablesan be expressed as
®,(x,t) for u=1,2,... obtained from microscopic fields

®,(x,{x*},{p"}) by coarse graining over spatial fluctuations
on the microscopic level® ,(x,t) =[P, (x,{x*}.{1p*}) Ic,

m 5D (X @

vﬂ(x)=—J AP, (X,X") 2

5P (x')’
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where Einstein's convention on repeated indices is underg(x,t), and the energy densig(x,t), where the latter quan-
stood and tity will not be considered further in this paper. In the nem-
N L , atic phase, the Frank directo(x,t) is the broken-symmetry
Pur(XX)={P (%), (X))} = = Py (X', X) (3 hydrodynamical variable with two independent degrees of

denotes the Poisson bracket of the coarse-grained variabIeIE?edom' As long as there are no topological defects present,

Itis defined as the coarse-grained average of the microscopic'> sufficient to describe the dynamics of the orientational
order byn(x,t). Otherwise, one has to resort to a more gen-

eral order parameter that is able to quantify, e.g., the biaxial
ordering in the core of a topological defect. We will describe

Poisson bracket:

{2,00,2,(X)}=[{ LX), @, (X )} e @ nematic order with the conventional Saupe—de Gennes
where[13] second-rank symmetric-traceless tensor paraméXet)
[10-12,1, also called alignment tensfi23]. In the isotropic
A . b (X) ob (x) phase, especially near the isotropic-to-nematic transition,
{<Dﬂ(x),<b,,(x’)}=2 + "—a Q(x,t) can be a slow variable whose relaxation to equilib-
al p; IXi rium is much slower than any microscopic collision time. In

- . the nematic phase, it also contains slow, nonhydrodynamic
IP,(X) 9D, (X") 5) components in addition to the hydrodynamic director vari-
X ape ' able. ' '

The complexity of nematic order presents problems not
Equation (2) can be rigorously derived from microscopic encountered in many other broken-symmetry systems such
principles[14—16. Roughly speaking, it can be viewed as a&s magnets and superfluids. Nematic order is associated with
the Poisson bracketH,®,} which in classical mechanics local molecular rigidity, and it only arises if constituent mol-
describes the time evolution of an Observeﬂjja]. App|y|ng ecules are anisotropic. A central quantity in our formalism
the chain rule to the derivatives of the Hamiltonian and notare the Poisson brackets between the alignment tensor
ing that® , is a field variable, the formal structure of Hg) ~ Q(x,t) or the directorn(x,t) and the momentum density
results. However, since we only employ a restricted numbe8(x,t). However, in the following it will become obvious
of coarse-grained macroscopic variables, all the “neglectedthat the calculation of these Poisson brackets is not straight-
microscopic degrees of freedom give rise to the dissipativdorward since neither the nematic order parame}eror the
term in the kinetic equatiorfl). It is proportional to the directorn can be defined as simple coarse-grained averages
generalized forcedH/5® ,(x) which together with® (x) of microscopic quantities.
forms a pair of conjugate variables. The quantity, is
called the dissipative tensor that, in general, may depend on A. Model molecule and dynamic variables
the fields® , and that may also contain terms proportional to

M
— V2. Itis determined by three principles. Firgth , /dt can

Our system contains a number of identical model-liquid-

| | 15D if i uiff . q crystal molecules indexed by, which consist of a set of
only couple to57/5®, if it possesses a different sign under 554 noints with masses* and position vectors®*. We

time frleversr;al, lthe |S|gn_ature of dissipation. S]?Cghfg'a has ._also introduce position vectorAx*#=x**—x* relative to
to reflect tde hcha .p?]'m grogp symmetry 0 the YNamiCa |ocation of the center of mass of each molecule‘at
system, and third, it has to be a symmetric tensor at Zero:EM(m“x““)/mo, wheremy= = ,,m* is the total mass of a

magnetic field to obey the Onsager principiz]. molecule. In our derivation of the Poisson brackets, it is
important that the molecules are not rigid, but that their con-
1. POISSON BRACKETS FOR NEMATIC stituent atoms be allowed to fluctuate around their average

LIQUID CRYSTALS positions. For simplicity, we will assume that the molecules
Our goal is to use the formalism outlined above to deriveha\./e a uniaxial shapg in the sense that the_lr moment Qf In-
ertia tensor, to be defined below, is also uniaxial. Consider-

the dynamical equations for the long-lived fields in a nematic . .
liquid crystal and the isotropic phase from which the nemati ng the fact that molecules perform fast rotations about their
ong axis on a time scale of 16°s [43], this is not a very

hase develops. Our most important results are the Poiss e X .
P P P severe restriction. With our model we can describe a huge

brackets of Egs(4) and (5, which we will derive in this range of possible molecules ranging from needlelike objects
section starting from an explicit microscopic model for thet0 molecules with prolate and oblatdisklike) shape. Even

constituent molecules. lobul | ith anisotropic sh included
Conserved fields are always hydrodynamical variables ped!obuiar polymers with anisotropic shape are inciuded.
We employ the conventional microscopic definition of the

cause their frequencies necessarily tend to zero with wav N i
number. In systems with a continuous broken symmetry, ensity of mass and momentum:
there are additional broken-symmetry hydrodynamical vari- .
ables. In addition, there can be modes that have characteristic d,=p(x)= 2 mM* 5(X— X*H), (6)
decay times that are much longer than any microscopic times an

even though they do not tend to infinity with wave number.

The conserved variables o_f both the isotropic and nematic &)2_4261()():2 PR S(X— XM, @)
phases are the mass dengiffx,t), the momentum density an
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which, after coarse graining, result in the macroscopic variThe nematic order paramete;v,,(x) must reduce tan;n;
ables p(x)= [P(X)]c and g(x)= [Q(X)]c- Note that thes 35” when all local axeg* are aligned along the spatially
function has the dimension of an inverse volume. We stresgniform directom, and all molecules have the same value of
that the definition of the momentum density in E@) in- ~ R“. It is straightforward to verify that the tensQ;;(x) de-
cludes the motion of all mass points, including, in particular,fined in Eq.(12) satisfies this constraint. Note that the fields
rotational motion about the centers of mass of anisotropi&ij(X) constitute the fieldsbs_¢(x) in our formalism.
particles. The parameteR® can easily and usefully be related to the
To describe the orientational order of the molecules, weanisotropy in the molecular moment-of-inertia tensor

follow the approach of Forst¢B9] who extracted the aniso-
tropic part from the_ density of the mqr_nent-ofiinertia tensor |q:2 m“[(Ax‘”‘)zéij — AXPHAX], (14)
and used its negative part as an additional microscopic field
variable: i

whose components parallel and perpendicular to the local

E R S(x—x), ®) anisotropy axis/® in a uniaxial system are, respectively,

1= mU(AXEH)?, (15)

where for each molecule we have m

Rij=2 mLAXPAX" = 5(Ax)?5,). (O 9= M (AXE) 22+ (A, (16
M

The coarse-grained variabR(x)=[R(X)]. is a symmetric ~where Ax** and Ax{** are, respectively, the component of
and traceless tensor of second rank, as demanded for tllexw parallel and perpend|cular . The anisotropyA |
nematic order parametép(x), but it also depends on the distinguishes between prolate\(*>0) and oblate 41¢
density of the molecules and, more important, it includes the >-0) molecules. For uniaxial systems, we find
fast fluctuations of the molecules around their average con-
figuration, which we are not interested in. To arrive at an RI=Al%=1*—|f 17

expression foQ(x), we note thaR“ is a tensor that for any |

particular atomic configuration can be represented in a basf@nly after calculating the Poisson brackesee Sec. 111 G,
in which it is diagonal. Since this tensor is traceless, it hagan we safely replacR® by its averaged valual, since, in
only two independent eigenvalues, one of which describegnicroscopic timesR® of different molecules relax to the
molecular biaxiality. Here, we will consider only molecules Same valull. In this case, we can replagé¥x) with

that are, on an average, uniaxial. In any real molecule, there

will be fluctuations in which it becomes momentarily biaxial. R(X)= ﬂp(x). (18)
We assume, however, that these fluctuations relax rapidly in

nonhydrodynamic times. I this case{ is characterized by Then, Eq.(12) results in the conventional definition of
a single parameter in addition to the unit vectat its Qij(X), whereQ [see Eq(11)] is averaged over many mol-

largest-eigenvalue principal axis. Then ecules. In what follows, we will also use
RY=R*Q, (10) Trie=1=1+2I,, (19
where where the final form is in the uniaxial case we consider when
all fast modes have relaxed.
Q= prpa— Eé__ (11) We stress that our approach is a generalization of the one
e 37 describing a simple flexible diatomic molecule in which the

_ ) . ) principal moments of inertia fluctuate and therefore have a
is the local molecular alignment tensor aRfl will be given nonvanishing Poisson bracket with the momentum density.

below. When this form ofRjj is valid, we can define the our quantityR(x) incorporates these fluctuations for a more
coarse-grained position dependent Saupe—de Gennes or¢@implex molecule. As we will see below, the Poisson brack-

parameter via ets of R(x) with the momentum density will give rise to one
additional term in the analogous Poisson bracketQ@f).

)| =R(X)Qjj(x), (12 This essential contribution was not taken into account by

c Forster[39] who consideredR(x) as a constant. Instead,

I32(x) is a dynamic quantity since it depends on the mass
density of the molecules through ti#&efunctions in Eq.(13)
and, more importantly, also reflects the fluctuations in the
(13 anisotropyR* of the molecular moment of inertia tensor.
c Whereas the dependence on the mass density only produces

Rij(x)= E R S(x—x“

where

R(x)z[ﬁ«x)]c:{E R*6(x—x%)

061709-4
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a term in the Poisson brackets @{x), which is irrelevant
for incompressible fluids, the fluctuations Rf* give rise to
the essential contribution just mentioned.

B. Poisson brackets

In calculating the Poisson brackets according to &g,
we use the following properties of th&function:

S(X—x")=8(x"—x), (20a
f(X)8(x—x")=F(x")6(x—x"), (20b)
Vi8(x—x")=—V{8(x—x"), (200

whereV,=4d/dx;, V;'=dlox{ andf(x) is an arbitrary func-
tion including theé function itself. Furthermore, we employ
the antisymmetry relation of E¢3).

PHYSICAL REVIEW E 67, 061709 (2003

the right-hand side of Eq22) produces the convective de-
rivative v, V,Qj; , and the second term gives rise to a reac-
tive coupling toV,v,.. All but the last term of\;,; in Eq.

(23) were basically derived by Forster in RgB9]. Since he

did not take into account the dynamics of the scalar variable
R(x), he missed the second-order ternrhat results from

the dynamics of the anisotrogy”. Furthermore, the prefac-
tor of the termQ;; 5, was —1. Note that this expression
Qij 6k is irrelevant for incompressible fluids. The term in the
first line of Eq. (23) is the only one that is antisymmetric
under interchange d€ andl. Its form is entirely dictated by
rotational symmetry, and there can be no other terms anti-
symmetric ink andl. The prefactors depending dhAl in

the second and fourth lines reduce, respectively, to 1/3 and 2
in the case of an infinitely thin needle. Our form B®fy
agrees with that determined by Pleiner, Liu, and Brg3@]
using phenomenological symmetry arguments. Their expres-

In the following, we list all the Poisson brackets with a sion, however, contains five additional terms of second order

nonzero value, briefly explain their meaning, and comment? Q. which our calculations do not produce. In addition, we
on their consequences. The evaluation of the Poisson bracfd specific values for the coefficients of the second through

ets is straightforward, except f¢Q;;(x),gx(x")} which we
illustrate in the following subsection.

We start with the dynamics of the mass dengitx) for
which we need

{p(x),gi(x")}=Vio(x=x")p(x").

Using the kinetic part of the Hamiltoniafigd®x g%/ (2p), and
the definition of velocityp;= 6H/ 69;=g;/p, the dissipative
velocity from Eq.(2) results inV,(x)=V*(x)=—V,;g;(x).

(21)

the fourth lines of Eq(23), which they view as phenomeno-
logical parameters. The more general form considered by
Pleineret al. is clearly permitted by symmetry, and one can
ask how it can arise from a microscopic model. It is almost
certain that mode coupling will renormalize our coefficients
and produce the additional terms of second ordé,itbut it

is difficult at this point to estimate how large these mode-
coupling corrections would be. It is also possible that mo-
lecular biaxiality will lead to additional second-order terms;
we have not investigated this question in detail. In what fol-

Since the the mass-conservation law does not allow fofows, we will continue to use the specific form produced by

a dissipative contribution I{(;,=0), we arrive atdp/dt
= —divg(x).

our Poisson-bracket calculation.
Finally, several nondissipative terms for the momentum

For the dynamics of the alignment tensor, we need théalance equation follow from

Poisson bracket oR;;(x) with gy(x). In agreement with
general phenomological argumen33], we find that this
Poisson bracket can be expressed as

1Qij (), 9k(X" )} =[ Vi Qjj(x) ] o(x—x")

= Nijt (X)V8(x=x"). (22

Its derivation is illustrated in Sec. Il Q\j;; depends on the
order paramete®;; , and in our calculation it is given by

1
Nijki :§(5iij| — 6, Qi+ 9k Qi1 — 6, Qi)
|
+ m( Sk i1+ 80— 5 8 5k|)
l 4
+ §(5iij| + 61 Qjk+ 0jk Qi + 91 Qik— 3 6} Qu1)

(23

2 I
- §5K|Qij -1+ m) QijQui -
Note that\;j; =0 sinceQ;;=0. In deriving Egs.(22) and
(23), we have omitted derivative terms of ord®V and
higher. In the nondissipative velocity f@J, the first term on

19i(X),p(X" )} =p(X)V; S(x—X"), (249
19i(%), Q(x") == [ViQj(x) ] 8(x—x")
= Vio(X=x")Njii(x"), (24D
{9i(%),9;(x")} == V{[a(x—x")g;(x")]
+V;a(x=x")gi(x). (240

From the kinetic part of the Hamiltonian, Eq®4a and
(240 generate the divergence of the momentum flux tensor
gig;/p. From Eq.(249 and the first term in Eq(24b), the
divergence of an elastic stress tensor including the pressure
results. Finally, the second and third terms in Exftb) pro-
duce an elastic coupling to the molecular figitit/ 5Q;; of

the liquid crystal.

C. Derivation of the central Poisson bracket

In this section, we present the derivation of the central
Poisson  bracket {Q;;(x),gx(x")}. We start with
{Rij(%),9k(x")}, introduce the definition of the alignment
tensor from Eq(12), R;j(x) =R(x)Q;;(X), apply the product
rule for Poisson brackets, and finally arrive at
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1
1Qij(),gu(X") } = W{Rij (X),0k(X")}

~ Q%)
R(x)

{R),9(x)}. (25

Calculating the single Poisson brackets, we employ

dAXPY m*
= 5B 5| 47— —|, (26)
X Mo
38(x—xP) mH
o Y, 8(x—xP) 6% —, (27)
X m

where, in the course of the manipulatioma//my either

sums up to one or gives a vanishing term due to the defini-

tion of the center of massZ, m*Ax**=0. We also use a
Taylor expansion of thé function,

S(X=X"+AX )= §(Xx—=X") + AX*V5(x—x")
+0(AX?V?), (28)

where O(---) means “order of.”"With these comments, the

evaluation of the Poisson bracket fér(,-(x) is straightfor-
ward and the coarse-grained result reads

{Rij(%),9k(X )} =[VkRij(x)18(x—X") + O(AX?V?)
+[Rj(X) 8+ 5 Ra(x) 5
—R;1 (%) dik— Rij (X) 8 ]V 6(x—x")
—R(X) (8 8j1 + 8k b1 — 5 8 S)
XV, 8(x—x"), (29
where

. (30

c

1
Ri(x) = 6

> Tr1%8(x—x*)

PHYSICAL REVIEW EG67, 061709 (2003

{R(x),0i(x")} = Vi[R(X) 8(x—x') ]+ O(AX?V2)

a

I I R
-3 g R

X S(X—=Xx)V;o(x—x"). (39
From Eq.(10), we find
R R =3A1RE+5(A1)?5; . (35)

So after coarse graining, E(B4), and replacind “ by | and
Al% by Al, we obtain

{R(X),gi(x")}=V[R(X)]8(x—X") + O(AX?V?)

| 1
1+ m) Rij(x)_gR(X)ﬁij

XV;8(x—x"). (36)

Finally, combining Eqs(29) and(36) in Eq. (25) leads to the
Poisson brackeltQ;; (x),gx(x")} of Egs.(22) and(23).

IV. DERIVATION OF DIRECTOR DYNAMICS

In the nematic phase, the orientational order is uniaxial
and the alignment tensor assumes the form

Qij (0 =[Qi;()1e=SOI[N(x)n;(x) = 5;/3],  (37)

where, on an average, the molecules point along the director
n(x). Projecting Q on n;n; in the definition [ﬁzij(x)]c
=R(X)Q;j(x), and usingﬁﬁ from Eq. (10) and R(x) from

Egs. (18) gives the conventional Maier-Saupe order param-
eter

Mo
p(X)

3
23

coS9*— %) S(x—x% |, (39

c

S(x)=

As we discussed earlier, the components of the moment-ofvhered“ is the angle of the principal axis of the molecule

inertia tensorsl® relax in microscopic times to their
molecule-independent valuevith components;; andl, . In
this limit, we have

I—R(x).

R(¥)=5Al

(31)

To complete our calculation dfQ;;(x),gx(x)}, we need to
evaluate{R(x),g«(x)}. To do so, we use the relation

RIRY=3(R")? (32
to calculate
{R%,pe#}= 2 (RM) *RA{RY it (33)

Using this result andR“=Al“, we obtain

relative ton(x) and my is the molecular mass. Note that
[---]c. means coarse graining over distances much larger
than the molecular scale so th@tis defined by averaging
over many molecules. The prefactory/¢ has to appear,
since S should not depend on the number density of the
molecules.

A. Poisson brackets for the director

To derive the dynamic equations in the nematic phase
with its constantS(x), we need the Poisson brackets for the
director. However, a direct microscopic definition of the di-

rector such tham(x) = [ﬁ(x)]C does not exist. The director is
only defined via the alignment tens@ in Eq. (37). We
therefore employ the macroscopic Poisson bracket
1Qij(X),09k(x")}, insert the uniaxial alignment tensor of Eq.
(37), and apply the product rule for Poisson brackets:
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{Qij (), gk(X)}=[m()n;(x) — 3 8; 1{S(x),gu(x")} B. Nondissipative velocities
+S0)M ()N (%), 96X} To calculate the nondissipative velocities from E2), we
1 ] !

need the Hamiltonian
+S(X)N;(X){N;i(x),g(X")}. (39

2
g°(x)

. . . . . HZJ d3x+F[p(x),n(x)]. 4
Taking the trace of this equation with respeci tpand pro- 2p(X) Lp().n(0)] 4
jecting it on n;(x) and n;(x), respectively, we obtain the ) o
relations It consists of a kinetic part and a free enefgyp(x),n(x)]

= [f(p,n,Vn)d3x, which is Frank’s free energy plus a term
280)m (){ni (%), g(x')} =0, (409  purely depending op.

In Sec. lll B, we have already calculated the nondissipa-

20S(%), 0 (X ) =£0:: (%), 0 (X" )10 (X)N:(X). (40D tive velocity for the density of mass a8 = —div g(x). For
18000k} ={Q45 00,96 oM (). (40D the director, we obtain with Eq43),
Taking the dot product of Eq39) with n;(x) and using Egs. n__ On. B _
(40) give the director-momentum Poisson bracket Vi v(X)- Vi) i () Viw (%) (48)
1 The first term on the right-hand side is the convective deriva-
N (x).0: (X" )t = = o7 %), (X ) (%), 41 tive of n and the second term introduces a reactive coupling
(i0.6;(x)} = 5 0id Q). gy(x)ym(x). - (41) to the deformation rate. Note thatV"=0, as it should be
sincen is a unit vector. The most complex term is the non-
where dissipative velocity of the momentum density. It employs
Egs. (249, (240, and(46) to get

5E:5ij_ninj (42)
Vi ¥ 9i(X)g;(x) v v oF
is the projector on the space perpendiculan(w). It has to TV T ) —p(X) L Sp(X) [ ini(x)]gnj(x)
appear since the derivativin/Jt has to be perpendicular to s
n itself due ton?=1. After insertion of Eq.(22) into Eq.
(41), we arrive at the final expression Vi Nk on(x)|° 49
1ni(x),g;(x")}=[Vjni(x)]6(x—=x") = Njjr(X) Vi S(x—x"), The divergence of the momentum flux tensor originates from

(43) the kinetic part of the Hamiltonian; a surface term has been
dropped since we are only interested in bulk properties. The

with fourth term introduces an elastic coupling to the molecular
field 6F/én. The second and the third term can be rewritten
Nijk= & N\ imjk /S such(see the Appendixthat the pressure
of
=3 (8N 83N + 3 NN+ 85n;), (44) p:p%_f (50)
where and the elastic stress tensor
=214+ 1) (45) of
= — —_— 0 _ )
3 Al'S ojj = avjnkV.nk, (51

denotes a reactive coefficient. It depends on the Maier-Saug@own from the Ericksen-Leslie equations, appear. The non-
order parameter and, in addition, on the molecular paramdissipative velocity finally reads
eters| and Al. It agrees with Forster’s result so the addi-

tional dynamic variabldr(x) does not affect its valug39]. _ 9i(X)g;(x) 0

In the case of needlelike moleculedAl=2 and A= (1 Vi=-v; p(X) ~ViP+ VotV )‘J‘k(x)anj(x) :
+2/S)/3. If, in addition, all the molecules are completely (52)
aligned §=1), we obtainA=1 and \jjx=&ny. This

agrees with Volovik’s result, who derived the Poisson bracket C. Dissipative terms

for the director on pure symmetry argumef&g], but it also . _ o
demonsirates that the symmetry arguments are not sufficient In this section, we collect the dissipative terms for the
for determining Poisson brackets in complex media. Finally, ynamic equations following the rules outlined in Sec. Il.

the Poisson bracket that enters the momentum balance rea8' the mass densiy no such term appears since it obeys a
conservation law.

19:00,n: (X )} =—[V;ni(x)]8(x—x") _The time denv_anve&n/at pouples to conjugate forces
with a different sign under time reversal. A possible term
— Vi d(X=X")\jie(X"). (46) involving §H/ 6p cannot occur since the dissipative tensor is
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a vector pointing along due to symmetry, thus violating the NijkViwj= xﬁankAijr oxXn with e=3curlv (58
requirement thatin/dt1 n. A second dissipative term intro-
duces a coupling té&H/ én;= 6F/én; : and introduce the rate of changerfelative to a vortex in
the fluid,
1 ;oF 53
| 1
y o, Nz%—wxn (59)

wherey is a rotational viscosity.
The time derivative ofy can only couple to the velocity we arrive at the Oseen equation well known from the
= §H/ 8g; . Pure couplings tw; are forbidden since they Ericksen-Leslie theory:
would break the Galilean invariance of the equations. Thus,
we are led tov ﬂijlekUFV,‘Ui'j where we hgve ir!t'roduced yiN; + 725 A= 5{ E (60)
the viscous stress tensm‘J The tensor of V|scosmesy”k| Lon;
possesses two permutation symmetrig$.;j, = = 7jiki since
; should be symmetrifd4] and(2) 7;ji = 7 Since it is
assomated with the dissipative enerfy;jy V; vJVkv|d3
Furthermore, it has to obey the lodal,;, symmetry of the
nematic phase. It can therefore be written as a sum of ter
that only containg;; andn; :

wherey;=vy and y,= —\y. Note that the ratio of the two
viscositiesy, and vy, is the reactive coeffcient which only
depends ors and the two molecular parametdrandAl, as

irst derived by Forster in Ref39] and later by Kamieh35].

his coefficient determines the angle between the flow direc-
tion and the director in a shear field; a phenomenon called
flow alignment.

Mijki =anin; nkn|+ (5|k51| + 81 i) Finally, for the momentum balance equation we obtain
— J9; i SF
a5+ 6 &:—Vj(glg]) |p+VO' +V )\klj +VJO'|,
+ (n nk5j| +n; nk5|| +n; n|5]k+n n Ik) at p 5 J
(61)
+ p16ij O+ p2(Sij NN+ NiN; dy) - (54

The first two terms correspond to the familiar material de-
rivative pdv; /dt. Our dynamic equation for the momentum

density completely agrees with the momentum balance of
- — Ericksen and Leslie. We have already identified the elastic

The viscous stress tensor then takes the fkin

, — a5+ ag 0 : . .
= amin A+ @A+ —5— (NAH N AN, sFress tensowj; in Eq. (51). The two terms in ths second line
give the complete viscous stress tenaﬁf‘ of Ericksen and
+ 18 At p2( S A+ 0N Agg) (55) Leslie. To show this, we replaa@:/b‘nk by the Oseen equa-

tion (60), use Eq.(55) for o/,

where the symmetrized velocity gradiend;=(Vv;  tons, arrive at
+V,v;)/2 is also called strain rate tensor. The last two terms SF
only appear in compressible fluids renormalize the pressur%.EL Rl
Therefore, they do not occur in the Ericksen-Leslie equa- M ong Y
tions. We will comment on the bars of some of the viscosities
in the following section.

ij » and, after some manipula-

= alninjnkn|Ak|+ azNinj + agniNj + a4Aij + a5njnkAik
+ agiNgAjic+ p16ij At p2( 8NN Ag +NinjAy),

D. Final equations (62)

Collecting the reactive and dissipative terms, we arrive at o N ) N
the final equations. We first obtain the conservation law fomhere the Leslie viscosities; are related to our viscosities

the density of mass: by
J =a;—y\?, 63
T?Z_V'g' (56) a=a;—y (633
ar=—y(1+N\)/2, (63b)
The equation for the director reads
az=7y(1-\)/2, (630
an; 1 ,oF
E:_v'vni"_)\ijkvkvj_;&ijé_nja (57) a,=ay, (63d)
where\;;x and the reactive coefficient are given in Egs. as=(as+ ag)/2+ YN (1+1)/2, (639
(44) and(45). Note thatdn; /dt=dn;/dt+uv - Vn; is the ma- o
terial derivative ofn;. If we write ag= (a5t ag)/l2—yN(1—N\)/2. (63f)
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Notice that the two Onsager relatiofs| and the Parodi re- B. Dissipative terms
lation [40] in the Ericksen-Leslie theory are automatically

The time derivativedQ;; /dt couples todF/5Q;; via a
fulfilled in our approach: Qjj P Qjj

fourth-rank tensor which should not alter the propertieQof
being a symmetric tensor with zero trace. Furthermore, since

V1T YT @ @z, (648 e want to describe biaxial orientational ordering in the
nematic phase, it has to obey the local symmetry of the
Y2=—Ny=aztas, (64D alignment tensor given, in general, by the point grag, .
To simplify our considerations, we only look for tensors
ayt az=ag— as. (640 which are invariant unde8 O(3) and, therefore, arrive at the

simplest dissipative term with the rotational viscosjty
We can therefore conclude that the formalism based on Pois-
son brackets completely reproduces the Ericksen-Leslie _E[l(iJrﬁ)_léi
equations. y[2\6Q;;  8Q;) 37" 8Qx

st

1
Y

oF
3Q

ij
(69)
V. DYNAMIC EQUATIONS FOR THE
ALIGNMENT TENSOR where the symbol - - -]°' projects out the symmetric and
traceless part of a second-rank tensor. In the general case,

Given the results of the preceding section, we are congq (69) would be replaced by- y [ SF/8QJS!, where
vinced that the formalism based on Poisson brackets is thg-1 '

: . . ! X ¥k IS a tensor function ofQ that is symmetric under
right means to derive the dynamic equations for anisotropic 1kl Q y

. ; ) j =kl i—], kel | i f
fluids characterized by the alignment tensar We follow t:o?” al’lldeJan?jn(C)ifKanalnd traceless under contractions o

t_he systemat_lc way of the f_ormahsm by collectlng the reac- Following the time-reversal criterion, a coupling between
tive and d_|SS|pat|ve terms first and then summarize and dISéQij /gt and 5HI 5p is also possible. However, according to
cuss the final equations. the Onsager principle such a term is not allowed since the
related coupling o5H/5Q;; to dp/dt does not exist.
A. Nondissipative velocities The dissipative term in the momentum balance equation is
The Hamiltonian has the following form: Vjoi;=VimjaViwi, whereoj; denotes the viscous stress
tensor. The tensor of viscositieg possesses the same per-
92(x) 3 mutation symmetries as in any isotropic system or in the
Hzf 2p(%) d*x+F[p(x),QX)], (65 director picture introduced before. However, now it has to
reflect the localD,,, symmetry that gives rise to nine inde-
where F[p(x),Q(x)]=/f(p,Q,VQ)d3x stands for the _pendent viscositiegt5]. We wi'II noF formulate this ten.sor_in
Landau—de Gennes free energy plus a term purely dependir§ 9eneral form, rather we will write it as an expansiorQn

on p. up to the second order:
The nondissipative velocity for the density of mass is
clear. The reactive term for the alignment tensor reads Nijki = M1.0ij O+ 172( 8k Oj1 + 631 Ojx) + 73( 5 Qi+ Qij Skr)
+ 7a( 85 Qj + 8.4 Qit + 31 Qi+ 851 Qi) + 75Qi Qur
V8= —0(x)- VQij(X)+ Nt () Vyuy(X), 66) 74(6iQji + 6k Qi + 81 Qjk + 651 Qik) 7]5Q|1Q(k7|0)

where \jji(x) is defined in Eq.(23). Due to Q;;=0 and ) _ _
Niii =0, the velocity does not change the zero trace of thavhich results in the following stress tensor:
order parameter.
In the nondissipative velocity? of the momentum bal- o1; = 716 Akt 2m2Ai + 73( 83 QA+ Qij Awk)
ance equation, we introduce, in full analogy to the director A A )
approach, the pressupe=pdf/dp—f and the generalization T 274(QikAji T QyiAik) T 75Qij QA (71)

of the Ericksen-Leslie elastic stress tensor .
Of course, there are three further terms quadrati® ithat

of we left out in Eq.(70). The problem is that we have no clear
———ViQu, (67)  criterion where to break up the expansion. We included one
IV Qu second-order term to be sure to reproduce all terms of the
] ) viscous stress tens{5) in the director picture. Inserting the
and finally arrive at uniaxial Q into Eq. (71), we are able to relate the present
viscosities to the one introduced in E&4) or (55):

0_
(Tij—

PR 1 TR
I T e I Y a1= 5%, ay=2m— 3 S, astag=27,S,
oF
+ Vi Nt () =—=——1. 68
i Main (50 6 (68 p1=71— 5 1S~ 5 755, po=7sS— 3 1S (72
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It is evident that the viscous stress tensor of &4d) contains 99

gig;
several shear viscosities which need to be worked out. i _Vj(%) ~Vip+Vjo)+V;

oF ,
)\klij@ tVjoij,
(77

C. Final equations

In discussing our final equations, we will compare them toVhere the elastic ) and viscous ¢f;) stress tensors are
the set of equations derived by Olmstedt and Goldbart whéefined in Egs.(67) and (71), respectively. Here, we also
followed the path outlined by de Gennes in Réflto derive  have a close resemblance with the result of Olmsted and
the Ericksen-Leslie equations. Goldbart. The first line of Eq(77) is identical to their ex-

The density of mass obeys the mass-conservation lavression. To investigate the second line, we write explicitly
The dynamic equation for the alignment tensor reads

o \ 25Q [ﬂ: St+2Q [5F St+l | [ SFE]st
dQj; Kii s~ = — 39 Q| =1 ikl ==l T35~
7”: —0-VQjj+ Njj Vivk— ;[5—(? - (73 ToQu 31 TELQl, HloQly 3 AILSQ),
! | SF
With \jji (x) from Eq.(23), we obtain explicitly -\ m) Q”Qk'[%}kl' (78)
11 2 - : - -
N Vioe =0 Wi — W Or + — — A= Z0.- A The first term on the right-hand side renormalizes the pres-
ki Viok= Qu Wiy = Wa Q3 A1 A 3 Qi Ak sure and, therefore, does not exist in the Olmsted-Goldbart

approach. Furthermore, only the antisymmetric part of the

+2[QAN - 1+ - Qi QuAW (74) ~ Second term appears in their paper. They had to introduce it
. Al) =Y ' in order to obtain the proper dissipation function
whereW;; = (Viv;—V;v;)/2 is the antisymmetric part of the ds 1] SE1T sE st
velocity gradient. The commutator € andW on the right- Ta=f rﬂ{j Aijt— 30| |50 }ng, (79
hand side of Eq(74) describes a rotation @ due to a fluid Y ij ij

vortex. With this in mind, we introduce, in the spirit of the . ot o ) .
Ericksen-Leslie equations, the new dynamic variable for thevherey™ [ 6F/6Q]*"is the dissipative flux introduced in Eq.

rate of change of the alignment tensor: (69) in connection with the generalized for¢éF/ Q1"
The third tensor on the right-hand side of E@8) with its
dQ; reactive coefficient/3Al again corresponds to a dissipative
Kij=—g¢ ~(QuWij = Wi Qy) (75 term with the viscous coefficient; in the Olmsted-Goldbart

approach. The fourth tensor, of second ordeQinis new.
Finally, Olmsted and Goldbart only introduced the isotropic
part of the viscous stress tensef; in Eq. (71), since they
were close to the nematic-isotropic phase transition.

and reformulate Eq(73) as

2 11 . :
Kij=— 3 Qij A+ __[A]isjt+ 2[QA]iSjt In concl_u5|on, we find a remarkable agreement between
3 3 Al our formalism and the approach by Olmsted and Goldbart.
| 11 sE 15t By identifying the reactive character of two of the terms, we
— 1+ =] Qij QuAW— _{_} . (76) are able to give a concrete value for the viscous coeffiegnt
Al v16Q i in the Olmsted-Goldbart paper in terms of the molecular pa-

rameterd andAl. Furthermore, we arrive quite naturally at

This result is essentially the same as that obtained by Pleineidditional terms with a reactive nature whose consequences
et al. [33], except that their result has additional terms quaneed to be worked out.
dratic in Q;; and linear inA;; . It is also very close to the
result of Olmsted and Goldbart who derived their equation
by a linear expansion of the dissipative fluK)(into the
generalized forceSA]fjt and[ 6F/5Q]%. The first term on The authors thank R. Kamien for helpful discussions and
the right-hand side vanishes for an incompressible fluitH. R. Brand and H. Pleiner for bringing Ref£1,39,33 to
(Aw=0) and, therefore, does not appear in the Olmstedour attention. H.S. acknowledges financial support from the
Goldbart approach. The second term has a reactive natufgeutsche Forschungsgemeinschaft under Grant No. Sta 352/
with a known coefficientl/3A1); it appears in the Olmsted- 5-1. T.C.L. was supported by the U.S. National Science
Goldbart treatment with an arbitrary coefficient The third ~ Foundation under Grant No. DMR00-96531.
and fourth term do not appear in their treatment but, in their
spirit, could be regarded as rgactive terms of hi_gher order iN\ppENDIX: PRESSURE AND ELASTIC STRESS TENSOR
Q. They necessarily appear in our approach with calculable
coefficients. The last term has a dissipative nature in both To introduce the pressung of Eq. (50) and the elastic
approaches. stress tensoorﬁ of Eqg. (51) in Eq. (49), we rewrite the sec-

Finally, the momentum balance equation takes the form ond term on the left-hand side as
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\ oF _ V.(f+p)+(V i f Al
-p S i(f+p)+( ip)% (A1)
and the third term as
v oF v (af v of "
( inj)é_nj_( inj) o, VKoV |- (A2)
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The sum of both terms together with

of of
_V|p+ _Vin

of
VifZ p ﬁnj —Vk(V,nJ) (A3)

L+
) ﬁanJ

givesp and o) .
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